COVALENT ANALOGUES OF DNA BASE-PAIRS AND TRIPLETS V+. SYNTHESIS OF PURINE-PURINE AND PURINE-PYRIMIDINE CONJUGATES CONNECTED BY DIVERSE TYPES OF ACYCLIC CARBON LINKAGES

Michal Hocek ${ }^{a, *}$, Hana Dvořákováb and Ivana Císařovác
${ }^{a}$ Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, CZ-166 10 Prague 6, Czech Republic; e-mail: hocek@uochb.cas.cz
${ }^{b}$ Laboratory of NMR Spectroscopy, Institute of Chemical Technology, Prague, Technická 5, CZ-166 28 Prague 6, Czech Republic; e-mail: hana.dvorakova@vscht.cz
${ }^{c}$ Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, CZ-128 43 Prague 2, Czech Republic; e-mail: cisarova@natur.cuni.cz

Received September 2, 2002
Accepted October 7, 2002

Dedicated to the memory of Professor Miloš Hudlický.

The title 1,2-bis(purin-6-yl)acetylenes, -diacetylenes, -ethylenes and -ethanes were prepared as covalent base-pair analogues starting from 6-ethynylpurines and 6-iodopurines by the Sonogashira cross-coupling or oxidative alkyne-dimerization reactions followed by hydrogenations. 6-[(1,3-Dimethyluracil-5-yl)ethynyl]purine (11) was prepared analogously and hydrogenated to the corresponding purine-pyrimidine conjugates linked via vinylene and ethylene linkers. Unlike the cytostatic bis(purin-6-yl)acetylenes and -diacetylenes, the purine-pyrimidine conjugates were inactive. Crystal structures of bis(purin-6-yl)acetylene 6a, -diacetylene 8a and -ethane 5a were determined by single-crystal X-ray diffraction.
Keywords: Purines; Pyrimidines; Nucleobases; Alkynes; Cross-coupling reactions; Nucleosides; Sonogashira reaction; Hydrogen bonds.

The effect of many clinically used antitumor agents is based on DNA crosslinking ${ }^{1}$ or on intercalation ${ }^{2}$ to DNA. Numerous models and analogues of Watson-Crick base pairs consisting of annelated ${ }^{3}$ or cross-linked ${ }^{4}$ purine and pyrimidine heterocycles or even more simple aromatic rings ${ }^{5,6}$ have been prepared. Such base-pairs analogues may interact with DNA (e.g. by intercalation); if incorporated into single stranded DNA, they are comple-

[^0]mentary to abasic site of a damaged DNA strand; or, alternatively, if incorporated to duplex, they form permanent cross-links.
A number of diverse purine-purine conjugates containing linkage (9-9, $8-8,9-8,9-7,9-6$ and $6-6$) of various lengths, including double and triplelinked purinophanes, have been prepared ${ }^{7}$ in order to study the $\pi-\pi$ stacking of purine bases. A variety of N^{6}, N^{6}-linked adenine-adenine dimers, trimers and tetramers with linkers of various lengths were prepared ${ }^{8}$; they exhibited diverse types of biological activity (inhibition of adenosine kinase, ribosomal peptidyltransferase, etc.).

Purines bearing carbon substituents in positions 2 or 6 possess a broad spectrum of biological activities. Thus 6-methylpurine is highly cytotoxic ${ }^{9}$, while 2-alkynyladenosines are an important class of adenosine receptors agonists ${ }^{10}$. Recently, a cytokinin and antioxidant activity of 6-(aryl-alkynyl)-, 6-(arylalkenyl)- and 6-(arylalkyl)purines ${ }^{11}$, a cytostatic activity of 6 -(trifluoromethyl)purine riboside ${ }^{12}$ and of 6 -arylpurine ribonucleosides ${ }^{13}$, a corticotropin-releasing hormone antagonist activity of some 2,8,9-trisubstituted 6-arylpurines ${ }^{14}$ and an antimicrobial activity of 9-benzyl6 -arylpurines ${ }^{15}$ were also reported.

Chart 1
A combination of the unique structural features of the above mentioned classes of compounds led us to the design of a new group of base-pair and triplet analogues (Chart 1) based on conjugates of two or three purine and/or pyrimidine bases connected with diverse carbon linkages. Such carbon linkers connected to carbon atoms of the heterocycles were expected to be stable towards enzymatic degradation. Tris(purin-6-yl)- and tris-(pyrimidin-5-yl)benzenes were prepared ${ }^{16,17}$ as triplet analogues by cyclotrimerization of 6-ethynylpurines or 6-ethynylpyrimidines. Bis(purin6 -yl)benzenes as well as (purin-6-yl)(pyrimidin-5-yl)benzenes were recently prepared by double cross-coupling of phenylenebis(stannanes) ${ }^{18}$. Very re
cently, we have reported a preliminary communication on purine dimers linked through positions 6 and 6^{\prime} by acetylene, diacetylene, vinylene and ethylene ${ }^{19}$ linkers. A significant cytostatic activity has been found in some bis(purin-6-yl)acetylenes and diacetylenes ${ }^{19}$, while the partially and fully saturated derivatives, as well as the phenylene-linked analogues were inactive. In this full-paper, the synthesis of the cytostatic purine-purine dimers linked by acyclic carbon chains is given in full detail and the study is extended to analogous purine-pyrimidine conjugates.

RESULTS AND DISCUSSION

Chemistry

The synthesis of the target compounds was based on standard acetylene chemistry (Scheme 1) using 9-benzyl-6-ethynylpurine ${ }^{17}$ (1a) as a key starting compound. The attempted Sonogashira reaction of this compound with

Scheme 1

9-benzyl-6-iodopurine (2a) in the presence of Cul, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ and $\mathrm{Et}_{3} \mathrm{~N}$ in DMF did not give the expected bis(purin-6-yl)acetylene 6a but its partly reduced ethylene derivative 3 a in 27% yield. The formation of this product could be explained by a reductive addition ${ }^{20}$ of the iodopurine $\mathbf{2 a}$ on the acetylene la. The presence of triethylamine and catalytic amounts of Cul and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ is crucial for this reaction, while in the absence of DMF the reaction proceeds with lower conversion (probably due to low solubility of starting compounds in $\mathrm{Et}_{3} \mathrm{~N}$). Therefore, though the mechanism has not been studied thoroughly, we suppose that triethylamine might be the reducing agent responsible for the formation of the disubstituted ethylene. Analogously, 6-iodo-9-THP-purine (2b) and 9-benzyl-6-ethynylpurine (1a) gave under the same conditions the heterodisubstituted ethylene $\mathbf{3 b}$. In order to determine the configuration of the compound 3a (vide infra), its cycloaddition with cyclopentadiene has been performed to give the cycloadduct 4. Catalytic hydrogenation of the ethylene derivative 3 a on Pd / C gave the fully saturated ethane derivative $\mathbf{5 a}$ in a good yield of 80%.

For the synthesis of the acetylene derivative 6a, an alternative method based on a recently published procedure ${ }^{21}$ has been used. The reaction of the 6 -iodopurine 2a with the terminal acetylene 1a was performed in the presence of tetrabutylammonium fluoride (TBAF) as base, catalytic amounts of Cul and $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ in THF at room temperature to give the desired acetylene $\mathbf{6 a}$ in a good yield of 57%. This approach has also been used for the synthesis of other related symmetrically and asymmetrically disubstituted acetylenes $\mathbf{6 b}$ and $\mathbf{6 c}$ differing by the substituents in positions 9 and 9^{\prime}, starting from the appropriate iodopurines $\mathbf{2 a}$ and $\mathbf{2 c}$ and ethynylpurines $\mathbf{1 b}$ and $\mathbf{1 c}$. Catalytic hydrogenation of the acetylene $\mathbf{6 a}$ on Lindlar catalyst afforded the complementary (Z)-ethylene derivative $7 \mathbf{a}$ in a low yield of 11% accompanied by the fully saturated compound 5a (19\%). Oxidative homo-coupling ${ }^{22}$ of the terminal acetylenes $\mathbf{1 a - 1 c}$ in the presence of CuCl and TMEDA ${ }^{23}$ afforded 1,4-bis(purin-6-yl)diacetylenes 8a-8c in good yields of 50-60\%.

Unlike with 6-iodopurines, the Sonogashira reaction of 6-ethynylpurine 1a with 5-iodo-1,3-dimethyluracil (9) under standard conditions (Cul, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ and $\mathrm{Et}_{3} \mathrm{~N}$ in DMF at $120^{\circ} \mathrm{C}$) gave the expected disubstituted acetylene $\mathbf{1 1}$ in 68% yield (Scheme 2). The same product was alternatively prepared in 70\% yield by cross-coupling of 5-ethynyl-1,3-dimethyluracil (10) with 9-benzyl-6-iodopurine (2a). Due to much easier access to 6-ethynylpurines than to 5 -ethynyluracil, the former approach is more practical. The acetylene $\mathbf{1 1}$ was subjected to catalytic hydrogenation on Pd / C. Due to low solubility of the starting compound, the reaction was sluggish and even
after 5 days the conversion was not complete. Nevertheless, from the reaction mixture, (E)-ethylene $\mathbf{1 2}$ and fully saturated ethane $\mathbf{1 3}$ derivatives were isolated in 15 and 40% yields, respectively. Attempted hydrogenation of 11 on Lindlar catalyst led to a complex mixture of $\mathbf{1 3}$ and some unidentified oligomeric and/or cycloadduct species.

Scheme 2

Spectroscopy

A combination of standard ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR and IR spectroscopies as well as MS and microanalyses was used for identification and full characterization of compounds. Due to high symmetry it was not easy to determine the configuration on the double bond in compound $\mathbf{3 a}$ (only one proton signal of the vinylene system with no significant interaction to any other proton). Even in the unsymmetrically disubstituted compound $\mathbf{3 b}$, the signals were overlapped and did not allow to determine the configuration by direct NMR methods. Therefore, we have desymmetrized the system by cycloaddition of cyclopentadiene. If the configuration of the starting disubstituted alkene was E , one racemic unsymmetrical cycloadduct should be formed, while for Z-isomer, a mixture of endo and exo symmetrical meso-forms was expected. The cycloadduct 4 was a single unsymmetrical compound which was the proof of E-configuration of the starting alkene 3a. The configuration of 4 was also unequivocally proved by NOE experiments. The key evidence for the determination of the E-configuration of the original alkene was based on NOE connectivities of protons $\mathrm{H}-5, \mathrm{H}-6$
and $\mathrm{H}-7$ of the bicyclic adduct: strong NOE contacts between protons $\mathrm{H}-7 \mathrm{~b}$ and $\mathrm{H}-5$ and between protons $\mathrm{H}-2$ and $\mathrm{H}-6$ (see Fig. 1). The complementary symmetrically disubstituted alkene 7a prepared by hydrogenation of 5a on Lindlar catalyst was assigned as Z-isomer. The assignment of E-configuration of the heterodisubstituted alkene $\mathbf{1 2}$ was based on the coupling constant of the vinylene protons $\left.\left({ }^{3}\right)_{\mathrm{H}, \mathrm{H}}=16 \mathrm{~Hz}\right)$.

Crystal Structures

Compounds 5a, 6a and $\mathbf{8 a}$ (compound $\mathbf{8 a}$ in two crystal modifications denoted as A and B) gave crystals suitable for X-ray diffraction (Table I). A single-crystal X-ray analysis showed bond lengths and angles of the purine moiety in these crystals (Fig. 2) to be rather standard, leaving geometrical parameters of linkers as a point of interest (Table II). The electron delocalization in linear acetylene linkage is well apparent from comparison of C6-C17 bond lengths being significantly shorter ($0.060 \AA$ in average) than for the saturated ethylene linker. In all molecules purine planes are parallel, and dihedral angles are zero for $\mathbf{8 a} \mathbf{A}, \mathbf{8 a B}$ and $\mathbf{5 a}$ as a consequence of the center of symmetry in the molecules or $2.9(2)^{\circ}$ for $\mathbf{6 a}$. As can be expected, the orientation of benzyl groups is flexible, the range of dihedral angles between least-square planes defined by the atoms N1-N9 and C11-C16 for presented structures being almost 20°.

Because of the lack of competition of strong hydrogen bonds, the presented crystals afford a good opportunity to study the non-conventional C-H $\cdots \mathrm{N}$ hydrogen bonds ${ }^{24}$. For structures $\mathbf{8 a} \mathbf{A}, \mathbf{8 a B}$ and $\mathbf{5 a}$, these bonds in-

Fig. 1
NMR numbering system and significant NOE interactions in compound 4

Table I
Crystal data, measurement and refinement details

Parameters	6a	8aA	8aB	5a
Formula	$\mathrm{C}_{26} \mathrm{H}_{18} \mathrm{~N}_{8}$	$\mathrm{C}_{28} \mathrm{H}_{18} \mathrm{~N}_{8}$	$\mathrm{C}_{28} \mathrm{H}_{18} \mathrm{~N}_{8}$	$\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~N}_{8}$
Crystal system	monoclinic	monoclinic	triclinic	monoclinic
Space group	P_{1} (No. 4)	$\mathrm{P} 2_{1} / \mathrm{n}$ (No. 14)	P-1 (No. 2)	P2 ${ }_{1} / \mathrm{c}$ (No. 14)
a, \AA	11.854(1)	14.8085(4)	4.6720(3)	13.1008(5)
b, Å	5.7150(6)	4.7182(2)	10.6500(6)	4.5407(1)
c, \AA A	15.604(1)	15.9372(4)	11.5210(7)	18.4198(7)
α, ${ }^{\circ}$			89.245(3)	
β, ${ }^{\circ}$	95.491(5)	94.527(2)	97.530(4)	93.998(2)
$\gamma{ }^{\circ}$			90.120(3)	
Z	2	2	1	2
V, \AA^{3}	1 052.25(16)	1 110.05(5)	568.26(6)	1 093.07(6)
$\mathrm{D}_{\mathrm{c}}, \mathrm{g} \mathrm{cm}{ }^{-3}$	1.397	1.396	1.363	1.357
Temperature, K	150(2)	150(2)	150(2)	150(2)
Crystal size, mm	$0.5 \times 0.1 \times 0.025$	$0.4 \times 0.2 \times 0.1$	$0.57 \times 0.075 \times 0.05$	$0.3 \times 0.1 \times 0.08$
Colour	colourless	yellow	blue	colourless
μ, mm^{-1}	0.089	0.088	0.086	0.086
$\theta_{\text {max }}{ }^{\circ}$	27.1	27.5	27.9	27.16
h range	-15,15	-19,19	-6,6	-16,16
k range	-7,7	-6,6	-13,13	-5,5
I range	-20,19	-20,20	-14,14	-23,23
Reflections measured	12369	20985	7537	16273
- independent ($\left.\mathrm{R}_{\text {int }}\right)^{\text {a }}$	2520 (0.094)	2534 (0.027)	2497 (0.076)	2408 (0.036)
- observed [l > $2 \sigma(\mathrm{l})$]	1525	2045	1835	1809
No. of parameters	307	199	199	198
GOF ${ }^{\text {b }}$	1.014	1.030	1.051	1.045
$\mathrm{R}_{1}, \mathrm{wR}\left(\mathrm{F}^{2}\right)^{\mathrm{c}}$	0.066, 0.127	0.0375, 0.099	0.056, 0.133	0.047, 0.104
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}, \mathrm{e} \AA^{-3}$	0.214, -0.243	0.173, -0.195	0.227, -0.285	0.159, -0.214

[^1] $|\Sigma| F_{0} \mid$ for observed reflections, $w R\left(F^{2}\right)=\left[\Sigma\left(w\left(F_{0}^{2}-F_{c}^{2}\right)^{2}\right) /\left(\Sigma w\left(F_{0}^{2}\right)^{2}\right)\right]^{1 / 2}$ for all data.

Fig. 2
Molecular structures of $\mathbf{6 a}, \mathbf{5 a}, \mathbf{8 a A}$ and $\mathbf{8 a B}$, respectively. Thermal ellipsoids are drawn at 50\% probability level
volve C8-H and N7 atoms, whereas in 6a, it is the intramolecular interaction between C12-H and N9 (for details see Table III). The orientation of molecules bonded by intermolecular bonds is inclined in 8aA and 5a, but molecules of $\mathbf{8 a B}$ are parallel, each purine moiety being connected to its partner by two centrosymmetrically related bonds.

The second important force is T-shaped $\mathrm{C}-\mathrm{H} \cdots \pi$-electrons interaction, common for all structures; again 6a is exceptional with $>\mathrm{C}$ (phenyl)-H purine contacts, contrary to $-\mathrm{CH}_{2}-$ phenyl interaction for other compounds (Table III). As regards $\pi-\pi$ interactions of aromatic rings, common features cannot be outlined. Molecules of 5a are parallel and mutually slipped, which enables a $\pi-\pi$ interaction between five- and six-membered rings of purines at centroid distances 3.5837(8) Å. Similar interaction occurred also

Table II
Selected bond lengths (in $\AA \AA$) and angles (in ${ }^{\circ}$) and atom distance (in $\AA \AA$) in compounds 6a, $8 \mathrm{aA}, 8 \mathrm{aB}$ and 5a

Parameter $^{\mathrm{a}}$	$\mathbf{6 a}$	$\mathbf{8 a A}$	$\mathbf{8 a B}$	$\mathbf{5 a}$
$\mathrm{C} 6-\mathrm{C} 17$	$1.443(8)$	$1.429(2)$	$1.433(2)$	$1.495(2)$
$\mathrm{C} 17-\mathrm{C} 17^{\mathrm{i}}$	-	-	-	$1.526(3)$
$\mathrm{C} 17-\mathrm{C} 18$	$1.208(5)$	$1.205(2)$	$1.200(2)$	-
$\mathrm{C} 18-\mathrm{C} 18^{\mathrm{ii}}$	-	$1.368(2)$	$1.370(3)$	-
$\mathrm{C} 18-\mathrm{C} 6^{\prime}$	$1.416(8)$	-	-	-
$\mathrm{C} 6-\mathrm{C} 17-\mathrm{C} 17^{\mathrm{i}}$	-	-	-	$112.3(2)$
$\mathrm{C} 6-\mathrm{C} 17-\mathrm{C} 18$	$177.7(4)$	$177.5(2)$	$176.3(2)$	-
$\mathrm{C} 17-\mathrm{C} 18-\mathrm{C} 6^{\prime}$	$176.2(4)$	-	-	-
$\mathrm{C} 17-\mathrm{C} 18-\mathrm{C} 18^{\mathrm{i}}$	-	$179.4(2)$	$178.6(3)$	-
t_{1}	$81.5(6)$	$74.2(1)$	$-114.1(2)$	$73.8(2)$
φ_{1}	$82.3(1)$	$86.93(2)$	$79.64(4)$	$79.32(3)$
φ_{1}^{\prime}	$67.7(1)$	-	-	-
$\mathrm{N}^{\prime}-\mathrm{N} 9^{\mathrm{b}}$	$10.385(4)$	$12.800(2)$	$12.669(3)$	$10.477(2)$

[^2]in 8a with the distances of $3.6143(6) \AA \AA$. However, in the other modification of this compound (8aB), two parallel purine planes are oriented head to tail and slipped at such a degree that only electrons at the C8 atoms can efficiently interact. On the other hand, this interaction brings them to an unexpectedly short distance from each other (C8‥C8 3.110(2) A). In the crystal of $\mathbf{6 a}$ the purine planes are oriented almost perpendicularly, atom N7 pointing towards C8 and the short N7-C8 distances being 3.037(7) Å.

From the molecular packing, it can be concluded that the title compounds could exhibit a wide variety of possible interactions. Which of them is present in the crystal is affected even by small changes during crystallization as was demonstrated on $\mathbf{8 a}$, where two crystal modifications differing substantially in intermolecular packing crystallized together from the same solution.

For comparison of these extended analogues with Watson-Crick basepairs, the N9-N9' and N1-N9 distances in adenylyl-uridine ${ }^{25}$ and guanylyl-cytidine ${ }^{26}$ pairs can be used. It follows that even for the shortest analogue $\mathbf{6 a}$ this dimension is almost 17% Iarger ($8.825,8.845 \AA$; $9.010 \AA$ and 10.385(4) \AA for AU; GC and 6a, respectively).

Table III
Geometrical parameters for $\mathrm{C}-\mathrm{H} \cdots \mathrm{X}$ interactions in $\mathbf{6 a}, \mathbf{8 a A}, \mathbf{8 a B}$ and $\mathbf{5 a}$

Compound	Interaction ${ }^{\mathrm{a}}$	$\mathrm{H} \cdots \mathrm{N} / \pi^{\mathrm{b}}, \AA$	$\mathrm{C} \cdots \mathrm{N} / \pi, \AA$	$\mathrm{C}-\mathrm{H} \cdots \mathrm{N} / \pi,{ }^{\circ}$	$\gamma^{\mathrm{c}},{ }^{\circ}$
6a	$\mathrm{sp}^{2} \mathrm{C} 12-\mathrm{H} \cdots \mathrm{N} 9($ intra $)$	2.539	$2.879(5)$	101.9	
	$\mathrm{sp}^{2} \mathrm{C} 14-\mathrm{H} \cdots \pi 2$	2.719	$3.517(5)$	144.3	3.27
	$\mathrm{sp}^{2} \mathrm{C} 14^{\prime}-\mathrm{H} \cdots \pi 2^{\prime}$	2.735	$3.581(5)$	151.5	2.17
8aA	$\mathrm{sp}^{2} \mathrm{C} 8-\mathrm{H} \cdots \mathrm{N} 7$	$2.57(1)$	$3.508(2)$	$161 .(1)$	
	$\mathrm{sp}^{3} \mathrm{C} 10-\mathrm{H} \cdots \pi 1$	$2.66(1)$	$3.481(1)$	$139 .(1)$	17.13
8aB	$\mathrm{sp}^{2} \mathrm{C} 8-\mathrm{H} \cdots \mathrm{N} 7$	$2.47(2)$	$3.183(2)$	$129 .(1)$	
	$\mathrm{sp}^{3} \mathrm{C} 10-\mathrm{H} \cdots \pi 1$	$2.79(2)$	$3.443(2)$	$124 .(1)$	9.71
5a	$\mathrm{sp}^{2} \mathrm{C} 8-\mathrm{H} \cdots \mathrm{N} 7$	$2.39(1)$	$3.331(2)$	$152 .(1)$	
	$\mathrm{sp}^{3} \mathrm{C} 10-\mathrm{H} \cdots \pi 1$	$2.62(2)$	$3.341(2)$	$128 .(1)$	9.65

[^3]
Conclusion

In conclusion, Sonogashira-type cross-coupling reactions of 6-alkynylpurines or 5-alkynylpyrimidines with 6-halopurines or 5-halopyrimidines and oxidative homo-dimerizations of 6-ethynylpurines were developed as an efficient approach to the synthesis acetylene-linked purine-purine and purine-pyrimidine or diacetylene-linked purine-purine conjugates. Hydrogenations of these alkynes gave the partly or fully saturated derivatives in moderate yields. While the substituted bis(purin-6-yl)acetylenes $\mathbf{6}$ and -diacetylenes 8 exhibit significant cytostatic activity (for details, see ref. ${ }^{19}$), the saturated derivatives 3,5 and 7, as well as the novel purine-pyrimidine conjugates 11-13 were inactive in these assays ${ }^{27}$. The synthesis of more hydrophilic water-soluble derivatives of these base-pair analogues and studies of their interactions with DNA will follow.

EXPERIMENTAL

Unless otherwise stated, solvents were evaporated at $40^{\circ} \mathrm{C} / 2 \mathrm{kPa}$ and compounds were dried at $60^{\circ} \mathrm{C} / 2 \mathrm{kPa}$ over $\mathrm{P}_{2} \mathrm{O}_{5}$. Melting points were determined on a Kofler block and are uncorrected. IR spectra (wavenumbers in cm^{-1}) were recorded on a Bruker IFS 88 spectrometer. NMR spectra were measured on a Bruker AMX-3 $400\left(400 \mathrm{MHz}\right.$ for ${ }^{1} \mathrm{H}$ and 100.6 MHz for ${ }^{13} \mathrm{C}$) or a Bruker DRX $500\left(500 \mathrm{MHz}\right.$ for ${ }^{1} \mathrm{H}$ and 125.8 MHz for ${ }^{13} \mathrm{C}$) spectrometer. TMS was used as internal standard. Chemical shifts (δ) are given in ppm, coupling constants (J) in Hz . Mass spectra were measured on a ZAB-EQ (VG Analytical) spectrometer using FAB (ionization by Xe , accelerating voltage 8 kV , glycerol matrix). DMF was distilled from $\mathrm{P}_{2} \mathrm{O}_{5}$, degassed in vacuo and stored over molecular sieves under argon. Compounds $\mathbf{1 a}, \mathbf{1 b}{ }^{17}, \mathbf{2 a} \mathbf{a}^{28}, \mathbf{2 b}^{29}$, $\mathbf{9}^{30}$ and $10{ }^{17}$ were prepared by known procedures.

N-Pentylation of 6-Chloropurine

A suspension of 6 -chloropurine ($6.2 \mathrm{~g}, 40 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(17 \mathrm{~g}, 123 \mathrm{mmol})$ in DMF (150 ml) was stirred at $50^{\circ} \mathrm{C}$ for 1 h . Then the mixture was cooled to room temperature and 1-bromopentane ($7.43 \mathrm{ml}, 60 \mathrm{mmol}$) was added. The mixture was stirred at room temperature for 10 h . The volatiles were evaporated in vacuo and the residue was chromatographed on a silica gel column (300 g , ethyl acetate-light petroleum $1: 2$ to $2: 1$) to get 6 -chloro-9-pentylpurine ($5.35 \mathrm{~g}, 60 \%$) followed by 6 -chloro-7-pentylpurine ($1.7 \mathrm{~g}, 19 \%$).

6-Chloro-9-pentylpurine. Oil that crystallized on standing, m.p. $32-36{ }^{\circ} \mathrm{C}$. El MS, m/z (rel.\%): 224 (44) [M], 168 (100), 154 (80). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 0.89 (t, $3 \mathrm{H}, \mathrm{J}=6.9$, CH_{3}); 1.30-1.42 (m, $4 \mathrm{H}, 2 \times \mathrm{CH}_{2}$); 1.93 (pent, $2 \mathrm{H}, \mathrm{J}=7.2, \mathrm{CH}_{2}$); $4.29(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.2$, $\mathrm{CH}_{2} \mathrm{~N}$); $8.11(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8) ; 8.75(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 13.75\left(\mathrm{CH}_{3}\right)$; 22.02, 28.66, 29.51 and $44.49\left(\mathrm{CH}_{2}\right) ; 131.62(\mathrm{C}-5) ; 145.03(\mathrm{CH}-8) ; 151.02$ ($\mathrm{C}-6$ and $\mathrm{C}-4$); 151.86 (CH-2). El HRMS, found: 224.0836; $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{CIN}_{4}$ [M] requires: 224.0829. For $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{ClN}_{4}$ (224.4) calculated: $53.45 \% \mathrm{C}, 5.83 \% \mathrm{H}, 24.94 \% \mathrm{~N}$; found: $53.14 \% \mathrm{C}, 5.96 \% \mathrm{H}$, 24.78\% N.

6-Chloro-7-pentylpurine. Oil that crystallized on standing, m.p. $38-41{ }^{\circ} \mathrm{C}$. El $\mathrm{MS}, \mathrm{m} / \mathrm{z}$ (rel.\%): 224 (44) [M], 167 (100). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 0.90 (t, $3 \mathrm{H}, \mathrm{J}=6.9, \mathrm{CH}_{3}$); 1.30-1.42 (m, $4 \mathrm{H}, 2 \times \mathrm{CH}_{2}$); 1.93 (pent, $2 \mathrm{H}, \mathrm{J}=7.3, \mathrm{CH}_{2}$); $4.46\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.3, \mathrm{CH}_{2} \mathrm{~N}\right.$); 8.21 (s, $1 \mathrm{H}, \mathrm{H}-8$); 8.87 (s, $1 \mathrm{H}, \mathrm{H}-2$). ${ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $13.77\left(\mathrm{CH}_{3}\right) ; 22.06,28.46$, 31.33 and $47.51\left(\mathrm{CH}_{2}\right) ; 122.34(\mathrm{C}-5) ; 142.96(\mathrm{C}-6) ; 148.87(\mathrm{CH}-8) ; 152.35(\mathrm{CH}-2) ; 162.05$ (C-4). El HRMS, found: 224.0837; $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{CIN}_{4}$ [M] requires: 224.0829.

6-Iodo-9-pentylpurine (2c)

6-Chloro-9-pentylpurine ($1.3 \mathrm{~g}, 5.8 \mathrm{mmol}$) was added portionswise into a stirred 57% aqueous $\mathrm{HI}(15 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ and the resulting suspension was stirred at $0{ }^{\circ} \mathrm{C}$ for 2 h . Then water (50 ml) and 35% aqueous $\mathrm{NH}_{3}(30 \mathrm{ml})$ were added and the suspension was stirred at room temperature for 20 min and filtered. The cake was dissolved in chloroform (200 ml) and washed with saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(300 \mathrm{ml})$, and water (300 ml). The solvent was evaporated and the residue chromatographed on a silica gel column (150 g , ethyl acetatelight petroleum $1: 2$) to give the 6 -iodopurine $\mathbf{2 c}(1.5 \mathrm{~g}, 82 \%)$ which was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /heptane. Colourless crystals, m.p. 49-52 ${ }^{\circ} \mathrm{C}$. $\mathrm{El} \mathrm{MS}, \mathrm{m} / \mathrm{z}$ (rel.\%): 316 (100) [M], 301 (13), 287 (25), 273 (14), 260 (63), 246 (25), 162 (70). IR (CHCl_{3}): 1 583, 1 554, 1 493, 1428,1 399, $1333 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $0.90\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6.9, \mathrm{CH}_{3}\right) ; 1.30-1.42(\mathrm{~m}, 4 \mathrm{H}$, $2 \times \mathrm{CH}_{2}$); 1.94 (pent, $2 \mathrm{H}, \mathrm{J}=7.2, \mathrm{CH}_{2}$); $4.27\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.2, \mathrm{CH}_{2} \mathrm{~N}\right.$); $8.13(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8) ; 8.63$ (s, $1 \mathrm{H}, \mathrm{H}-2) .{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $13.75\left(\mathrm{CH}_{3}\right) ; 22.01,28.65,29.48$ and 44.48 $\left(\mathrm{CH}_{2}\right) ; 122.08$ (C-5); 138.58 (C-6); 144.36 (CH-8); 148.06 (C-4); 151.85 (CH-2). El HRMS, found: 316.0167; $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{4}$ [M] requires: 316.0185. For $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{IN}_{4}$ (316.1) calculated: 37.99\% C, 4.14\% H, 17.72\% N; found: 38.37\% C, 4.28\% H, 17.68\% N.

9-Pentyl-6-[(trimethylsilyl)ethynyl]purine

DMF (10 ml) and $\mathrm{Et}_{3} \mathrm{~N}$ (4 ml) were added through septum to an argon purged flask containing 6-chloro-9-pentylpurine ($2.69 \mathrm{~g}, 12 \mathrm{mmol}$), TMS-C $\equiv \mathrm{CH}$ ($3 \mathrm{ml}, 21 \mathrm{mmol}$), Cul $(200 \mathrm{mg}, 1 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(200 \mathrm{mg}, 0.174 \mathrm{mmol})$. The mixture was then stirred at $120^{\circ} \mathrm{C}$ for 7 h and left at ambient temperature overnight. The solvents were evaporated in vacuo and the residue was chromatographed on a silica gel column (150 g , ethyl acetate-light petroleum 1:2) to give compound 9-pentyl-6-[(trimethylsilyl)ethynyl]purine as amorphous solid (2.2 g, 64\%). El MS, m/z (rel.\%): 286 (97) [M], 271 (60), 257 (17), 243 (11), 230 (50), 214 (65), 201 (100), 185 (28), 171 (18), 158 (66), 144 (50). IR (CHCl_{3}): 2 163, 1 583, 1 497, 1 402, 1 329, $1252,849 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.35\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Si}\right) ; 0.90(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6.9$, CH_{3}); 1.25-1.42 (m, $4 \mathrm{H}, 2 \times \mathrm{CH}_{2}$); 1.93 (pent, $2 \mathrm{H}, \mathrm{J}=7.2, \mathrm{CH}_{2}$); 4.29 (t, $2 \mathrm{H}, \mathrm{J}=7.2$, $\mathrm{CH}_{2} \mathrm{~N}$); 8.13 (s, $1 \mathrm{H}, \mathrm{H}-8$); $\left.\left.8.93(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2) .{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(100.6} \mathrm{M} \mathrm{Hz} \mathrm{CDCl},\right)_{3}\right):-0.44\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Si}\right)$; $13.75\left(\mathrm{CH}_{3}\right) ; 22.02,28.65,29.48$ and $44.05\left(\mathrm{CH}_{2}\right) ; 98.48$ and $105.23(\mathrm{C} \equiv \mathrm{C}) ; 134.32(\mathrm{C}-5)$; 141.10 (C-6); 145.35 (CH-8); 151.76 (C-4); $152.38(\mathrm{CH}-2)$. For $\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{~N}_{4} \mathrm{Si}$ (286.4) calculated: 62.89\% C, 7.74\% H, 19.56\% N; found: 62.51\% C, 7.81\% H, 19.29\% N.

6-Ethynyl-9-pentylpurine (1c)

A solution of 9-pentyl-6-[(trimethylsilyl)ethynyl]purine ($1.88 \mathrm{~g}, 6.6 \mathrm{mmol}$) in saturated ethanolic ammonia (100 ml) was stirred for 2 h . The solvent was evaporated and the residue chromatographed on a silica gel column (150 g , ethyl acetate-light petroleum $1: 1$ to $3: 1$) to give the acetylene $\mathbf{1 c}\left(1.15 \mathrm{~g}, 82 \%\right.$) which was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ heptane.

Brownis crystals, m.p. 66-69 ${ }^{\circ} \mathrm{C}$. El MS, m/z (rel.\%): 214 (95) [M], 199 (20), 185 (35), 172 (22), 158 (100), 144 (75), 130 (18), 117 (20), 103 (20). IR (CHCl_{3}): 3 302, 2 119, 1 583, 1 497, $1403,1329,643 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $0.89\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.0, \mathrm{CH}_{3}\right) ; 1.28-1.40(\mathrm{~m}, 4 \mathrm{H}$, $2 \times \mathrm{CH}_{2}$); 1.94 (pent, $2 \mathrm{H}, \mathrm{J}=7.3, \mathrm{CH}_{2}$); $3.73\left(\mathrm{~s}, 1 \mathrm{H}, \equiv \mathrm{CH}\right.$); 4.29 (t, $2 \mathrm{H}, \mathrm{J}=7.3, \mathrm{CH}_{2} \mathrm{~N}$); 8.14 (s, $1 \mathrm{H}, \mathrm{H}-8$); $8.95(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 13.75\left(\mathrm{CH}_{3}\right) ; 22.02,28.66$, 29.48 and $44.10\left(\mathrm{CH}_{2}\right) ; 77.99$ ($\left.\equiv \mathrm{C}-\right) ; 85.87(\equiv \mathrm{CH}) ; 134.91(\mathrm{C}-5) ; 140.49(\mathrm{C}-6) ; 145.59$ (CH-8); 151.72 (C-4); 152.39 (CH-2). El HRMS, found: 214.1207; $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{4}$ [M] requires: 214.1218. For $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{4}$ (214.3) calculated: $67.27 \% \mathrm{C}, 6.59 \% \mathrm{H}, 26.15 \% \mathrm{~N}$; found: $67.09 \% \mathrm{C}, 6.69 \% \mathrm{H}$, 25.90\% N.

Reductive Addition of 6-Iodopurines to 6-Ethynylpurines. General Procedure

DMF (7 ml) and $\mathrm{Et}_{3} \mathrm{~N}(2 \mathrm{ml})$ were added through septum to an argon-purged flask containing a 6-iodopurine 2 (1.5 mmol), 6-ethynylpurine $\mathbf{1}$ (1.5 mmol), Cul ($30 \mathrm{mg}, 0.15 \mathrm{mmol}$) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(150 \mathrm{mg}, 0.130 \mathrm{mmol})$. The mixture was then stirred at $120^{\circ} \mathrm{C}$ for 15 h . The solvents were evaporated in vacuo and the residue was chromatographed on a silica gel column (150 g, ethyl acetate-light petroleum 1:2 to pure ethyl acetate) to give the bis(purinyl)ethylenes 3. Substantial amounts (ca 40\%) of unreacted starting 6-iodopurines 2 were also isolated.
(E)-1,2-Bis(9-benzylpurin-6-yl)ethene (3a). Yield 27\%; m.p. 245-247 ${ }^{\circ} \mathrm{C}$ ($96 \% \mathrm{EtOH}$). El MS, m/z (rel.\%): 444 (57) [M], 399 (11), 353 (20) [M - Bn], 326 (7), 91 (100). IR (CHCl_{3}): 1 590, 1 579, $1500,1454,1444,1401,1328,982,715 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}$): 5.56 (s, 4 H , $\left.\mathrm{CH}_{2} \mathrm{Ph}\right) ; 7.30-7.40(\mathrm{~m}, 10 \mathrm{H}, \mathrm{H}$-arom.) ; $8.78(\mathrm{~s}, 2 \mathrm{H},-\mathrm{CH}=) ; 8.86(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}-8) ; 9.00(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{H}-2) .{ }^{13} \mathrm{C}$ NMR (125.8 MHz, DM SO-d ${ }_{6}$): $46.53\left(\mathrm{CH}_{2}\right) ; 127.61,127.90$ and 128.72 (CH-arom.); 131.31 (C-5); 133.11 (-CH=); 136.36 (C-ipso-arom.); 147.24 (CH-8); 150.84 (C-6); 152.15 (CH-2 and C-4). El HRMS, found: 444.1745; $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{~N}_{8}$ [M] requires: 444.1811. For $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{~N}_{8}$ (444.5) calculated: 70.26% C, 4.54% H, 25.21% N; found: 69.89% C, 4.47% H, 24.90% N.
(E)-9-Benzyl-6-\{2-[9-(tetrahydropyran-2-yl)purin-6-yl]vinyl \}purine (3b). Yield 15\%. FAB MS, m / z (rel.\%): 439 (8) $[\mathrm{M}+\mathrm{H}], 91$ (100). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 1.68-1.85 and 2.06-2.35 ($2 \times \mathrm{m}, 6 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{THP}$); 3.81 (brt, $1 \mathrm{H}, \mathrm{J}=11.5, \mathrm{CH}_{2} \mathrm{Oa}$); 4.20 (brd, $1 \mathrm{H}, \mathrm{J}=11.2, \mathrm{CH}_{2} \mathrm{Ob}$); 5.48 (s, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$); 5.84 (dd, $1 \mathrm{H}, \mathrm{J}=10.2$ and 2.2, NCHO); 7.31-7.38 (m, $5 \mathrm{H}, \mathrm{H}$-arom.); 8.12 (s, 1 H, H-8-PuBn); 8.35 (s, 1 H, H-8-PuTHP); 8.93 (d, 1 H, J = 16.0, -CH =); 8.97 (d, 1 H, $\mathrm{J}=16.0,-\mathrm{CH}=$); 9.01 (s, $1 \mathrm{H}, \mathrm{H}-2-\mathrm{PuTHP}$); 9.04 (s, $1 \mathrm{H}, \mathrm{H}-8-\mathrm{PuBn}$). ${ }^{13} \mathrm{C}$ NMR (125.8 MHz , $\left.\mathrm{CDCl}_{3}\right)$: 22.77, 24.85 and $31.79\left(\mathrm{CH}_{2}-\mathrm{THP}\right) ; 47.28\left(\mathrm{CH}_{2} \mathrm{Ph}\right) ; 68.83\left(\mathrm{CH}_{2} \mathrm{O}\right) ; 81.98$ (OCHN); 127.81, 128.57 and 129.14 (CH-arom.); 131.97 (C-5-PuBn); 132.16 (C-5-PuTHP); 133.68 ($2 \times-\mathrm{CH}=$); 135.13 (C-ipso-arom.); 142.68 (CH-8-PuTHP); 144.76 (CH-8-PuBn); 151.59 (C-4-PuTHP); 152.42 (C-6); 152.52 (CH-2-PuTHP); 152.63 (C-4-PuBn); 152.67 (C-6); 152.72 (CH-2-PuBn). FAB HRMS, found: 439.2008; $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{8} \mathrm{O}[\mathrm{M}+\mathrm{H}]$ requires: 439.1995.
trans-5,6-Bis(9-benzylpurin-6-yl)bicyclo[2.2.1]hept-2-ene (4)
A mixture of ethylene $\mathbf{3 a}(160 \mathrm{mg}, 0.36 \mathrm{mmol})$, freshly prepared cyclopentadiene (1 ml) and toluene (20 ml) was refluxed for 4 h . Then the solvent was evaporated and the residue was chromatographed on silica gel (100 g, ethyl acetate-light petroleum $1: 1$ to $2: 1$) to give the cycloadduct 4 as brownish oil ($120 \mathrm{mg}, 65 \%$) (ca 95% purity). El MS, m/z (rel.\%): 510 (3) [M], 444 (23), 353 (15), 326 (5), 91 (69), 66 (100). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): 1.60 (d, 1 H , J = 7.9, H-7a-BCH); 2.33 (d, 1 H, J = 8.2, H-7b-BCH); 3.34 (brs, $1 \mathrm{H}, \mathrm{H}-1-\mathrm{BCH}$); 3.91 (brs, 1 H , $\mathrm{H}-4-\mathrm{BCH})$; 4.71 and $5.33(2 \times \mathrm{m}, 2 \times 1 \mathrm{H}, \mathrm{H}-5$ and $\mathrm{H}-6-\mathrm{BCH}) ; 5.41$ and $5.44(2 \times \mathrm{s}, 2 \times 2 \mathrm{H}$,
$\left.2 \times \mathrm{CH}_{2} \mathrm{Ph}\right) ; 5.96$ and $6.56(2 \times \mathrm{m}, 2 \times 1 \mathrm{H}, \mathrm{H}-2$ and $\mathrm{H}-3-\mathrm{BCH}) ; 7.28-7.35(\mathrm{~m}, 10 \mathrm{H}$, H -arom.); 7.95 and $8.00(2 \times \mathrm{s}, 2 \times 1 \mathrm{H}, 2 \times \mathrm{H}-8-\mathrm{Pu}) ; 8.88$ and $8.95(2 \times \mathrm{s}, 2 \times 1 \mathrm{H}, 2 \times$ $\mathrm{H}-2-\mathrm{Pu}) .{ }^{13} \mathrm{C}$ NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 45.51 and $46.34(\mathrm{CH}-5,6-\mathrm{BCH}) ; 47.12$ and 47.19 $\left(\mathrm{CH}_{2}-7-\mathrm{BCH}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{Ph}\right) ; 48.25(\mathrm{CH}-4-\mathrm{BCH}) ; 50.64(\mathrm{CH}-1-\mathrm{BCH}) ; 127.88,128.48$ and 129.06 (CH-arom.); 132.58 (C-5-Pu); 135.28 (C-ipso-arom.); 135.63 and 137.95 (CH-2,3-BCH); 142.97 and 143.21 (CH-8-Pu); 150.56 and 150.79 (C-4-Pu); 152.19 and 152.34 (CH-2-Pu); 163.37 and 164.00 (C-6-Pu). El HRMS, found: 510.2284; $\mathrm{C}_{31} \mathrm{H}_{26} \mathrm{~N}_{8}$ [M] requires: 510.2280.

Cross-Coupling of 6-Iodopurines with 6-Ethynylpurines. General Procedure

A degassed 0.165 m solution of TBAF trihydrate in THF ($24 \mathrm{ml}, 4 \mathrm{mmol}$) was added dropwise to an argon purged flask containing 6-ethynylpurine $\mathbf{1}$ (1.67 mmol), 6-iodopurine 2 $(1.67 \mathrm{mmol}), \mathrm{Cul}(60 \mathrm{mg}, 0.3 \mathrm{mmol}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(100 \mathrm{mg}, 0.14 \mathrm{mmol})$ at ambient temperature and the mixture was stirred for 4 h . The solvent was evaporated and the residue was chromatographed on silica gel (200 g, ethyl acetate-light petroleum 1 : 1) to give the bis(purinyl)acetylenes 6 which were recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ heptane.

1,2-Bis(9-benzylpurin-6-yl)ethyne (6a). Yield 57\%; m.p. 254-257 ${ }^{\circ} \mathrm{C}$. FAB MS, m/z (rel. \%): 443 (5) $[\mathrm{M}+\mathrm{H}], 91$ (100). IR $\left(\mathrm{CHCl}_{3}\right): 1583,1448,1403,1330 .{ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}$, CDCl_{3}): 5.49 (s, $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$); 7.30-7.40 (m, $10 \mathrm{H}, \mathrm{H}$-arom.); 8.15 (s, $2 \mathrm{H}, \mathrm{H}-8$); 9.07 (s, 2 H , $\mathrm{H}-2) .{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $47.52\left(\mathrm{CH}_{2} \mathrm{Ph}\right) ; 90.89(\mathrm{C} \equiv) ; 127.89,128.80$ and 129.28 (CH-arom.); 134.83 and 135.09 (C-5 and C-ipso-arom.); 140.40 (C-6); 145.83 (CH-8); 152.04 (C-4); 152.84 (C-2). El HRMS, found: 442.1691; $\mathrm{C}_{26} \mathrm{H}_{18} \mathrm{~N}_{8}$ [M] requires: 442.1654. For $\mathrm{C}_{26} \mathrm{H}_{18} \mathrm{~N}_{8}$ (446.5) calculated: $70.58 \% \mathrm{C}, 4.10 \% \mathrm{H}, 25.32 \% \mathrm{~N}$; found: $70.80 \% \mathrm{C}, 4.05 \% \mathrm{H}$, 25.02\% N.

6-[(9-Benzylpurin-6-yl)ethynyl]-9-(tetrahydropyran-2-yl)purine (6b). Yield 56\%; yellow microcrystals, m.p. 83-85 ${ }^{\circ} \mathrm{C}$. FAB MS, m/z (rel.\%): 437 (6) [M + H], 352 (30) [M + H - THP], 91 (100). IR (KBr): $2223,1582,1498,1445,1404,1323 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: 1.65-1.85 and 2.04-2.20 ($2 \times \mathrm{m}, 6 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{THP}$); $3.80\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=11.3, \mathrm{OCH}_{2} \mathrm{a}\right.$); 4.19 (d, 1 H , $\mathrm{J}=11.5, \mathrm{OCH}_{2} \mathrm{~b}$); 5.49 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$); $5.81(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.8, \mathrm{NCHO}$); 7.27-7.36 (m,5 H, H -arom.); 8.18 and $8.38(\mathrm{H}-8) ; 9.01$ and $9.04(\mathrm{H}-2) .{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(125.8} \mathrm{M} \mathrm{Hz} ,\mathrm{CDCI}{ }_{3}$): 22.61, 24.74, 31.74 and $47.47\left(\mathrm{CH}_{2}-\mathrm{THP}\right) ; 68.80\left(\mathrm{CH}_{2} \mathrm{Ph}\right) ; 82.16(\mathrm{OCHN}) ; 90.70$ and $90.73(\mathrm{C} \equiv \mathrm{C})$; 127.83, 128.69, 129.16 (CH-arom.); 134.66, 134.84, 135.07 (C-ipso-arom. and C-5); 140.06 (C-6); 143.87 and $145.90(\mathrm{CH}-8) ; 151.05$ and $151.89(\mathrm{C}-4) ; 152.55$ and $152.73(\mathrm{CH}-2)$. FAB HRMS, found: 437.1858; $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~N}_{8} \mathrm{O}_{1}[\mathrm{M}+\mathrm{H}]$ requires: 437.1838. For $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{8} \mathrm{O}$ (436.5): 66.04\% C, 4.62\% H, 25.67\% N; found: 65.80\% C, 4.84\% H, 25.39\% N.

1,2-Bis(9-pentylpurin-6-yl)ethyne (6c). Yield 66\%; m.p. 183-185 ${ }^{\circ} \mathrm{C}$. El MS, m/z (rel.\%): 402 (25) [M], 346 (12), 277 (100). IR (KBr): 1 587, 1 578, 1 502, 1 439, 1 402, 1 321. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $0.85\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.0, \mathrm{CH}_{3}\right.$); 1.25-1.38 (m, $4 \mathrm{H}, 2 \times \mathrm{CH}_{2}$); 1.91 (pent, 2 H , $\mathrm{J}=7.3, \mathrm{CH}_{2}$); $4.29\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.3, \mathrm{CH}_{2} \mathrm{~N}\right) ; 8.16(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8) ; 8.98(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2) .{ }^{13} \mathrm{C} \mathrm{NMR}$ ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $13.76\left(\mathrm{CH}_{3}\right) ; 22.02,28.67,29.48$ and $44.12\left(\mathrm{CH}_{2}\right) ; 90.74(\equiv \mathrm{C}-) ; 135.07$ (C-5); 140.06 (C-6); 145.96 (CH-8); 151.92 (C-4); 152.43 (CH-2). El HRMS, found: 402.2270; $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{8}$ [M] requires: 402.2280 . For $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{8}$ (402.5) calculated: $65.65 \% \mathrm{C}, 6.51 \% \mathrm{H}$, 27.84\% N; found 65.73\%: C, 6.58\% H, 27.70\% N.

Oxidative Dimerizations of Ethynylpurines. General Procedure
A solution of $\mathrm{CuCl}(20 \mathrm{mg}, 0.2 \mathrm{mmol})$, TMEDA ($37 \mu \mathrm{l}, 0.25 \mathrm{mmol}$) in DME (2 ml) was stirred at ambient temperature while a solution of an ethynylpurine $\mathbf{1}$ ($1 \mathbf{m m o l}$) in DME
$(8 \mathrm{ml})$ was added dropwise. The stirring of the mixture in air atmosphere was continued for 4 h and it was allowed to stand overnight. Then the solvent was evaporated and the residue was chromatographed on silica gel (100 g, ethyl acetate-light petroleum $1: 1$) to give the diacetylenes 8 which were recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /heptane.

1,4-Bis(9-benzylpurin-6-yl)butadiyne (8a). Yield 59\%; m.p. $215{ }^{\circ} \mathrm{C}$ (dec.). FAB MS, m/z (rel.\%): 467 (8) [M + H], 91 (100). IR (CHCl_{3}): 2 157, 1 575, 1 497, 1 491, 1 457, 14351 404, 1 330. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 5.46 (s, $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$); 7.26-7.38 (m, $10 \mathrm{H}, \mathrm{H}$-arom.); 8.12 (s, $2 \mathrm{H}, \mathrm{H}-8$); 9.01 (s, $1 \mathrm{H}, \mathrm{H}-2$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $47.55\left(\mathrm{CH}_{2} \mathrm{Ph}\right) ; 78.59$ and 80.68 ($\mathrm{C} \equiv \mathrm{C}$); 127.96, 128.83 and 129.27 (CH -arom.); 134.62 and 135.52 (C-arom. and $\mathrm{C}-5$); 139.72 (C-6); 145.80 (CH-8); 151.98 (C-4); 152.81 (CH-2). FAB HRMS, found: 467.1700; $\mathrm{C}_{28} \mathrm{H}_{19} \mathrm{~N}_{8}[\mathrm{M}+\mathrm{H}]$ requires: 467.1732 . For $\mathrm{C}_{28} \mathrm{H}_{18} \mathrm{~N}_{8}$ (466.5) calculated: $72.10 \% \mathrm{C}, 3.89 \% \mathrm{H}$, 24.02 N ; found: $71.96 \% \mathrm{C}, 3.82 \% \mathrm{H}, 23.81 \% \mathrm{~N}$.

1,4-Bis[9-(tetrahydropyran-2-yl)purin-6-yl]butadiyne (8b). Yield 50\%; m.p. $220^{\circ} \mathrm{C}$ (dec.). FAB MS, m/z (rel.\%): 455 (5) [M + H], 371 (8) [M + H - THP], 287 (24) [M + H - 2 THP], 57 (100). IR (CHCl_{3}): 2 157, $1576,1489,1435,1407,1333 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 1.64-1.81 and 2.00-2.18 (m, $12 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{THP}$); 3.77 (dt, $2 \mathrm{H}, \mathrm{J}=11.4$ and 2.4, $\mathrm{CH}_{2} \mathrm{Oa}$); 4.17 (brd, $2 \mathrm{H}, \mathrm{J}=$ 11.4, $\mathrm{CH}_{2} \mathrm{Ob}$); 5.78 (dd, $2 \mathrm{H}, \mathrm{J}=10.3$ and 2.3, NCHO); 8.35 (s, $2 \mathrm{H}, \mathrm{H}-8$); 8.94 (s, $2 \mathrm{H}, \mathrm{H}-2$). ${ }^{13} \mathrm{C}$ NMR ($\left.100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: 22.65, 24.81 and $31.81\left(\mathrm{CH}_{2}-\mathrm{THP}\right) ; 68.86\left(\mathrm{CH}_{2} \mathrm{O}\right) ; 78.60$ and 80.65 (C $=\mathrm{C}$); 82.27 (NCHO); 135.76 (C-5); 139.62 (C-6); 143.95 (CH-8); 151.14 (C-4); 152.59 (CH-2). For $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{8} \mathrm{O}_{2}$ (454.5) calculated: $63.43 \% \mathrm{C}, 4.88 \% \mathrm{H}, 24.66 \% \mathrm{~N}$; found: $63.05 \% \mathrm{C}$, 4.86\% H, 24.29\% N.

1,4-Bis(9-pentylpurin-6-yl)butadiyne (8c). Yield 73\%; m.p. 202-204 ${ }^{\circ} \mathrm{C}$. El MS, m/z (rel.\%): 426 (6) [M], 91 (100). IR (KBr): 2 157, 1 574, 1 494, 1434,1 398, 1 329. ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $0.91\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.0, \mathrm{CH}_{3}\right) ; 1.30-1.41\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right) ; 1.96$ (pent, $2 \mathrm{H}, \mathrm{J}=7.3$, CH_{2}); $4.32\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.3, \mathrm{CH}_{2} \mathrm{~N}\right.$); $8.18(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8) ; 8.98(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2) .{ }^{13} \mathrm{C}$ NMR (100.6 MHz , $\left.\mathrm{CDCl}_{3}\right): 13.75\left(\mathrm{CH}_{3}\right) ; 22.03,28.69,29.49$ and $44.16\left(\mathrm{CH}_{2}\right) ; 78.59$ and $80.50(\equiv \mathrm{C}-) ; 135.62$ (C-5); 139.50 (C-6); 146.00 (CH-8); 151.96 (C-4); 152.47 (CH-2). El HRMS, found: 426.2274; $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{8}$ [M] requires: 426.2280. For $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{8}$ (426.5) calculated: $67.58 \% \mathrm{C}, 6.14 \% \mathrm{H}$, 26.27\% N; found: 67.47\% C, 6.14\% H, 26.26\% N.

1,2-Bis(9-benzylpurin-6-yl)ethane (5a)

Compound $3 \mathbf{a}$ ($150 \mathrm{mg}, 0.34 \mathrm{mmol}$) was hydrogenated at room temperature under atmospheric pressure in the presence of $10 \% \mathrm{Pd} / \mathrm{C}(100 \mathrm{mg})$ in $\mathrm{MeOH}(20 \mathrm{ml})$ for 10 h . Then the suspension was filtered through Celite and the filtrate evaporated. The residue was chromatographed on silica gel (100 g, ethyl acetate-light petroleum 1:1) to give the product 5a which was recrystallized from EtOH. Yield 120 mg (80%); colourless needles, m.p. 219-221 ºC. El MS, m/z (rel.\%): 446 (40) [M], 368 (8), 355 (38), 237 (11), 149 (25), 91 (100). IR (CHCl_{3}): $1595,1437,1407$, $1333 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 3.88\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$; 5.43 (s, $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$); 7.26-7.37 (m, $10 \mathrm{H}, \mathrm{H}$-arom.); 7.95 (s, $2 \mathrm{H}, \mathrm{H}-8$); 8.88 (s, $2 \mathrm{H}, \mathrm{H}-2$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $30.88\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; 47.19\left(\mathrm{CH}_{2} \mathrm{Ph}\right) ; 127.80,128.53$ and 129.11 (CH-arom.); 132.59 (C-5); 135.24 (C-arom.); 143.49 (CH-8); 150.78 (C-4); 152.53 (C-2); 161.38 (C-6). El HRMS, found: 446.1962; $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~N}_{8}$ [M] requires: 446.1967. For $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~N}_{8}$ (446.5) calculated: 69.94\% C, 4.79\% H, 25.10\% N; found: 69.63\% C, 4.93\% H, 24.83\% N.
(Z)-1,2-Bis(9-benzylpurin-6-yl)ethene (7a)

Compound $\mathbf{6 a}$ ($250 \mathrm{mg}, 0.57 \mathrm{mmol}$) was hydrogenated at room temperature under atmospheric pressure in presence of Lindlar catalyst (100 mg) in a mixture of DMF (20 ml), EtOH $(50 \mathrm{ml})$ and ethyl acetate (50 ml) for 8 days. Then the suspension was filtered through Celite and the filtrate evaporated. The residue was chromatographed on silica gel (100 g, ethyl acetate-light petroleum 1 : 1) to give compound $\mathbf{7 a}$ ($27 \mathrm{mg}, \mathbf{1 1 \%}$), $\mathbf{5 a}$ ($48 \mathrm{mg}, 19 \%$), starting compound $\mathbf{6 a}(32 \%)$ and an inseparable mixture of some oligo- or polymeric materials. Compound 7a: Yellow microcrystals, m.p. 242-244 ${ }^{\circ} \mathrm{C}$ (EtOH). FAB MS, m/z (rel.\%): 445 (3) $[\mathrm{M}+\mathrm{H}], 91(100)$. IR $\left(\mathrm{CHCl}_{3}\right): 1580,1498,1454,1403,1326,717 .{ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}$, CDCl_{3}): 5.51 (s, $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$); 7.30-7.40 (m, $10 \mathrm{H}, \mathrm{H}$-arom.); 8.14 (s, $2 \mathrm{H}, \mathrm{H}-8$); 8.97 (s, 2 H , $-\mathrm{CH}=$); $9.07(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}-2) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125.8 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): 47.33\left(\mathrm{CH}_{2}\right) ; 127.87,128.62$ and 129.18 (CH-arom.); 132.01 (C-5); 133.84 (-CH=); 135.16 (C-ipso-arom.); 144.72 (CH-8); 152.47 (C-6 and C-4); 152.77 (CH-2). El HRMS, found: 444.1770; $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{~N}_{8}$ [M] requires: 444.1811.

9-Benzyl-6-[(1,3-dimethyluracil-5-yl)ethynyl]purine (11)
Method A: DMF (7 ml) and $\mathrm{Et}_{3} \mathrm{~N}(2 \mathrm{ml})$ were added through septum to an argon purged flask containing 9-benzyl-6-ethynylpurine (1a; $490 \mathrm{mg}, 2 \mathrm{mmol}$), 1,3-dimethyl-5-iodouracil (9; $650 \mathrm{mg}, 2.4 \mathrm{mmol})$, Cul $(40 \mathrm{mg}, \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(120 \mathrm{mg}, 0.1 \mathrm{mmol})$. The mixture was stirred at $120{ }^{\circ} \mathrm{C}$ for 15 h . The solvents were evaporated in vacuo and the residue was chromatographed on a silica gel column (150 g , ethyl acetate-light petroleum $1: 2$ to pure ethyl acetate) to give the product $\mathbf{1 1}$ ($670 \mathrm{mg}, 90 \%$).

M ethod B: Analogously to method A, starting from 5-ethynyl-1,3-dimethyluracil (10; $82 \mathrm{mg}, 0.5 \mathrm{mmol}$) and 9-benzyl-6-iodopurine ($\mathbf{2 a} ; 168 \mathrm{mg}, 0.5 \mathrm{mmol}$) product $\mathbf{1 1}$ (130 mg , 70%) was prepared. Brownish crystals, m.p. $224-227^{\circ} \mathrm{C}$ ($96 \% \mathrm{EtOH}$). El MS, m/z (rel. \%): 372 (30) [M], 254 (22), 91 (89), 57 (94), 43 (100). IR (CHCl_{3}): 2 220, 1 714, 1 666, 1 637, 1 579, 1 498, 1 481, 1 457, 1 440, $1404,1374,1334 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 3.38$ (s, 3 H , CH_{3}); 3.47 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$); 5.46 (s, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$); 7.27-7.36 (m, $5 \mathrm{H}, \mathrm{H}$-arom.); 7.87 (s, 1 H , $\mathrm{H}-6-\mathrm{U}$); 8.16 (s, $1 \mathrm{H}, \mathrm{H}-8-\mathrm{Pu}$); 8.95 (s, $1 \mathrm{H}, \mathrm{H}-2-\mathrm{Pu}) .{ }^{13} \mathrm{C}$ NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 28.43 and $37.60\left(\mathrm{CH}_{3}\right) ; 47.45\left(\mathrm{CH}_{2}\right) ; 88.21$ and $90.51(\mathrm{C} \equiv \mathrm{C}) ; 97.41(\mathrm{C}-5-\mathrm{U}) ; 127.87,128.69$ and 129.17 (CH -arom.); 133.91 (C-5-U); 134.79 (C-ipso-arom.); 141.23 (C-6-Pu); 145.35 (CH-8-Pu); 147.87 (CH-6-U); 150.76 ($\mathrm{C}=\mathrm{O}-2-\mathrm{U}$); 151.49 (C-4-Pu); 152.79 (CH-2-Pu); 160.87 (C=O-4-U). El HRMS, found: 372.1341; $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{6} \mathrm{O}_{2}$ [M] requires: 372.1335. For $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{6} \mathrm{O}_{2}$ (372.4) calculated: 64.51% C, $4.33 \% \mathrm{H}, 22.57 \%$ N; found: 64.23% C, $4.53 \% \mathrm{H}, 22.27 \%$ N.

Hydrogenation of 11

Compound 11 ($350 \mathrm{mg}, 0.94 \mathrm{mmol}$) was hydrogenated at room temperature under atmospheric pressure in presence of $10 \% \mathrm{Pd} / \mathrm{C}(500 \mathrm{mg})$ in $\mathrm{MeOH}(100 \mathrm{ml})$ for 5 days. Then the suspension was filtered through Celite and the filtrate evaporated. The residue was chromatographed on silica gel (100 g , ethyl acetate-light petroleum $1: 1$ to pure ethyl acetate) to give the ethene 12 ($52 \mathrm{mg}, 15 \%$), ethane 13 ($140 \mathrm{mg}, 40 \%$) and unreacted starting compound ($100 \mathrm{mg}, 29 \%$).
(E)-9-Benzyl-6-[2-(1,3-dimethyluracil-5-yl)vinyl]purine (12). Yellow crystals, m.p. 247-250 ${ }^{\circ} \mathrm{C}$. El MS, m/z (rel.\%): 374 (75) [M], 283 (36) [M - Bn], 260 (12), 226 (10), 198 (7), 180 (7), 171 (7), 129 (10), 91 (100). IR (CHCl_{3}): 1 705, 1 653, 1 629, 1 581, $1497,1480,1452,1401,1$ 324,

984, 728. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 3.42 and $3.48\left(2 \times \mathrm{s}, 2 \times 3 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right) ; 5.44(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{Ph}$); 7.26-7.37 (m, 5 H, H-arom.); 7.57 (s, $1 \mathrm{H}, \mathrm{H}-6-\mathrm{U}$); 8.01 (s, $1 \mathrm{H}, \mathrm{H}-8-\mathrm{Pu}$); 8.06 (d, $1 \mathrm{H}, \mathrm{J}=16.0, \mathrm{CH}=$); 8.15 ($\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=16.0, \mathrm{CH}=$); $8.91(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2-\mathrm{Pu})$. El HRMS, found: 374.1496; $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{6} \mathrm{O}_{2}$ [M] requires: 374.1491. For $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{6} \mathrm{O}_{2}$ (374.4) calculated: $64.16 \% \mathrm{C}$, $4.85 \% \mathrm{H}, 22.45 \% \mathrm{~N}$; found: $63.88 \% \mathrm{C}, 4.69 \% \mathrm{H}, 22.32 \% \mathrm{~N}$.

9-Benzyl-6-[2-(1,3-dimethyluracil-5-yl)ethyl]purine (13). Yellowish crystals, m.p. 70-74 ${ }^{\circ} \mathrm{C}$. El MS, m/z (rel.\%): 376 (77) [M], 285 (100) [M - Bn], 91 (95). IR (CHCl_{3}): 1 700, 1 664, 1 642, 1 596, $1498,1457,1406,1333 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 2.95$ (t, $2 \mathrm{H}, \mathrm{J}=7.4$, $\left.\mathrm{CH}_{2}\right) ; 3.26$ and $3.31\left(2 \times \mathrm{s}, 2 \times 3 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right) ; 3.43\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.4, \mathrm{CH}_{2}\right) ; 5.42(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{Ph}$); 7.05 (H-6-U); 7.28-7.35 (m, $5 \mathrm{H}, \mathrm{H}$-arom.); 8.01 (s, $1 \mathrm{H}, \mathrm{H}-8-\mathrm{Pu}$); 8.89 (s, 1 H , $\mathrm{H}-2-\mathrm{Pu}) .{ }^{13} \mathrm{C}$ NMR ($\left.125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 25.78\left(\mathrm{CH}_{2}\right) ; 27.89\left(\mathrm{CH}_{3}\right) ; 31.49\left(\mathrm{CH}_{2}\right) ; 36.67\left(\mathrm{CH}_{2}\right)$; $47.28\left(\mathrm{CH}_{2} \mathrm{Ph}\right) ; 112.35$ (C-5-U); 127.83, 128.59 and 129.12 (CH -arom.); 132.57 and 135.09 (C-ipso-Ph and C-5-Pu); 139.67 (CH-6-U); 143.82 (CH-8-Pu); 150.84 and 151.73 (C-4-Pu and $\mathrm{C}-6-\mathrm{Pu}) ; 152.50(\mathrm{CH}-2-\mathrm{Pu}) ; 161.15$ and $163.48(\mathrm{C}=\mathrm{O})$. El HRMS, found: 376.1646; $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{6} \mathrm{O}_{2}$ [M] requires: 376.1648. For $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{6} \mathrm{O}_{2}$ (376.4) calculated: $63.82 \% \mathrm{C}, 5.36 \% \mathrm{H}, 22.33 \% \mathrm{~N}$; found: 63.97% C, $5.04 \% \mathrm{H}, 22.13 \% \mathrm{~N}$.

X-Ray Crystallographic Study

Crystals of $\mathbf{6 a}, \mathbf{8 a}$ (crystal modifications \mathbf{A} and \mathbf{B}) and $\mathbf{5 a}$ were mounted on a glass capillary with epoxy glue and measured on a Nonius KappaCCD diffractometer using monochromatized $\mathrm{MoK} \alpha$ radiation ($\lambda=0.71073 \AA$). Absorption was neglected for all structures ($\mu=0.086-0.089 \mathrm{~mm}^{-1}$). Crystal data are summarized in Table I. The structures were solved by direct methods ${ }^{31}$ (SIR92, Altomare, 1994) and refined by full-matrix least squares based on F^{2} (SHELXL97) ${ }^{32}$.

The hydrogen atoms of $\mathbf{8 a} \mathbf{A}, \mathbf{8 a B}$ and $\mathbf{5 a}$ were found on difference Fourier maps and refined without restrictions with isotropic thermal parameters.

The hydrogen atoms of $\mathbf{6 a}$ were fixed into idealised positions (riding model) and assigned temperature factors either $H_{\text {iso }}(H)=1.2 \mathrm{U}_{\text {eq }}$ (pivot atom), since extremely thin, poorly diffracted crystal of this compound did not provide data of sufficient quality for their refinement. The final difference map of all structures displayed no peaks of chemical significance.

CCDC 188845-188848 contain the supplementary crystallographic data for structures 6a, $\mathbf{8 a A}, \mathbf{8 a B}$ and $5 \mathbf{a}$, respectively. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge, CB2 1EZ, UK; fax: +44 1223 336033; or deposit@ccdc.cam.ac.uk).

This work is a part of a research project Z4055905. It was supported by the Grant Agency of the Czech Republic (grant No. 203/00/0036). The cytostatic activity was studied by Dr I. V otruba (Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague), whose contribution is gratefully acknowledged. The authors also thank Dr D. Dvořák (Institute of Chemical Technology, Prague) for helpful discussions and suggesting the use of cyclopentadiene for the configuration analysis.

REFERENCES

1. Review: Rajski R. S., Williams R. M.: Chem. Rev. (Washington, D. C.) 1998, 98, 2723.
2. Review: Baguley B. C.: Anti-Cancer Drug. Des. 1991, 3, 1.
3. Bhat B., Leonard N. J., Robinson H., Wang A. H. J.: J. Am. Chem. Soc. 1996, 118, 10744; and references therein.
4. a) Nagatsugi F., Uemura K., Nakashima S., Maeda M., Sasaki S.: Tetrahedron Lett. 1995, 36, 421; b) Nagatsugi F., Uemura K., Nakashima S., Maeda M., Sasaki S.: Tetrahedron 1997, 53, 3035; c) Nagatsugi F., Kawasaki T., Usui D., Maeda M., Sasaki S.: J. Am. Chem. Soc. 1999, 121, 6753; d) Nagatsugi F., Usui D., Kawasaki T., Maeda M., Sasaki S.: Bioorg. Med. Chem. Lett. 2001, 11, 343.
5. a) Quiao X., Kishi Y.: Angew. Chem., Int. Ed. 1999, 38, 928; b) Qiu Y. L., Li H. Y., Topalov G., Kishi Y.: Tetrahedron Lett. 2000, 41, 9425; c) Li H. Y., Qiu Y. L., Moyroud E., Kishi Y.: Angew. Chem., Int. Ed. 2001, 40, 1471; d) Li H. Y., Qiu Y. L., Kishi Y.: ChemBioChem 2001, 2, 371.
6. a) Ogawa A. K., Abou-Zied O. K., Tsui V., Jimenez R., Case D. A., Romesberg F. E.: J. Am. Chem. Soc. 2000, 122, 9917; b) Abou-Zied O. K., Jimenez R., Romesberg F. E.: J. Am. Chem. Soc. 2001, 123, 4613.
7. a) Leonard N. J., Ito K.: J. Am. Chem. Soc. 1973, 95, 4010; b) Akahori K., Hama F., Sakata Y., Misumi S.: Tetrahedron Lett. 1984, 25, 2379; c) Seyama F., Akahori K., Sakata Y., Misumi S., Aida M., Nagata C.: J. Am. Chem. Soc. 1988, 110, 2192.
8. a) Žemlička J., Owens J.: J. Org. Chem. 1977, 42, 517; b) Bhuta P., Li C., Žemlička J.: Biochem. Biophys. Res. Commun. 1977, 77, 1237; c) Žemlička J.: Biochemistry 1980, 19, 163; d) Murata M., Bhuta P., Owens J., Žemlička J.: J. Med. Chem. 1980, 23, 781; e) Žemlička J.: Tetrahedron Lett. 1984, 25, 5619; f) Agathocleous D. C., Page P. C. B., Cosstick R., Galpin I. J., McLennan A. G., Prescott M.: Tetrahedron 1990, 46, 2047.
9. Montgomery J. A., Hewson K.: J. Med. Chem. 1968, 11, 48.
10. Review: Müller C. E.: Curr. Med. Chem. 2000, 7, 1269.
11. a) Brathe A., Gundersen L.-L., Rise F., Eriksen A. B., Vollsnes A. V., Wang L. N.: Tetrahedron 1999, 55, 211; b) Brathe A., Andresen G., Gundersen L.-L., Malterud K. E., Rise F.: Bioorg. Med. Chem. 2002, 10, 1581.
12. Hocková D., Hocek M., Dvořáková H., Votruba I.: Tetrahedron 1999, 55, 11109.
13. a) Hocek M., Holý A., Votruba I., Dvořáková H.: J. Med. Chem. 2000, 43, 1817; b) Hocek M., Holý A., Votruba I., Dvořáková H.: Collect. Czech. Chem. Commun. 2000, 65, 1683; c) Hocek M., Holý A., Votruba I., Dvořáková H.: Collect. Czech. Chem. Commun. 2001, 66, 483; d) Hocek M., Holý A., Dvořáková H.: Collect. Czech. Chem. Commun. 2002, 67, 325.
14. Cocuzza A. J., Chidester D. R., Culp S., Fitzgerald L., Gilligan P.: Bioorg. Med. Chem. Lett. 1999, 9, 1063.
15. a) Bakkestuen A. K., Gundersen L.-L., Langli G., Liu F., Nolsoe J. M. J.: Bioorg. Med. Chem. Lett. 2000, 10, 1207; b) Andresen G., Gundersen L.-L., Nissen-Meyer J., Rise F., Spilsberg B.: Bioorg. Med. Chem. Lett. 2002, 12, 567; c) Gundersen L.-L., Nissen-Meyer J., Spilsberg D.: J. Med. Chem. 2002, 45, 1383.
16. Hocek M., Stará I. G., Starý I., Dvořáková H.: Tetrahedron Lett. 2001, 42, 519.
17. Hocek M., Stará I. G., Starý I., Dvořáková H.: Collect. Czech. Chem. Commun. 2002, 67, 1223.
18. Havelková M., Dvořák D., Hocek M.: Tetrahedron 2002, 58, 7431.
19. Hocek M., Votruba I.: Bioorg. Med. Chem. Lett. 2002, 12, 1055.
20. An analogous reductive addition has been recently observed for the reaction of aryl halides with substituted acetylenes in the presence of NaOMe: Wu M.-J., Wei L.-M., Lin F.-C., Leou S.-P., Wei L.-L.: Tetrahedron 2001, 57, 7839.
21. Mori A., Shimada T., Kondo T., Sekiguchi A.: Synlett 2001, 649.
22. Review: Siemsen P., Livingston R. C., Diederich F.: Angew. Chem., Int. Ed. 2000, 39, 2632.
23. Hay A. S.: J. Org. Chem. 1962, 27, 3320.
24. Thalladi V. R., Gerhke A., Boese R.: New J. Chem. 2000, 24, 463.
25. Seeman N. C., Rosenberg J. M., Suddath F. L., Kim J. P. P., Rich A.: J. Mol. Biol. 1976, 104, 109.
26. Rosenberg J. M., Seeman N. C., Day R. O., Rich A.: J. Mol. Biol. 1976, 104, 145.
27. Votruba I.: Unpublished results.
28. Gundersen L.-L., Bakkestuen A. K., Aasen A. J. Øveras H., Rise F.: Tetrahedron 1994, 50, 9743.
29. Prasad A. S. B., Stevenson T. M., Citineni J. B., Nyzam V., Knochel P.: Tetrahedron 1997, 53, 7237.
30. Das B., Kundu N. G.: Synth. Commun. 1988, 18, 855.
31. Altomare A., Cascarano G., Giacovazzo C., Guagliardi A., Burla M. C., Polidori G., Camalli M.: J. Appl. Crystallogr. 1994, 27, 435.
32. Sheldrick G. M.: SHELXL97. University of Göttingen, Göttingen 1997.

[^0]: + For Part IV, see ref. ${ }^{17}$

[^1]: ${ }^{a} R_{\text {int }}=\Sigma \mid F_{o}^{2}-F_{o, \text { mean }}^{2} / / \Sigma F_{o}^{2} .{ }^{b}$ GOF $=\left[\Sigma\left(w\left(F_{o}^{2}-F_{c}^{2}\right)^{2}\right) /\left(N_{\text {diffrs }}-N_{\text {params }}\right)\right]^{1 / 2} .{ }^{c} R(F)=\Sigma| | F_{o}|-| F_{c} \|$

[^2]: ${ }^{\text {a }} \mathrm{t}_{1}$ torsion angle C4-N9-C10-C11; φ_{1} dihedral angle between least-squared planes N1-N9 and C11-C16, φ_{1}^{\prime} dihedral angle between planes N1'-N9' and C11'-C16'; symmetry code: $i=1-x, 1-y, 1-z$ for $\mathbf{8 a} \mathbf{A}$ and $\mathbf{5 a}, i=1-x, 2-y, 1-z$ for $\mathbf{8 a B}$. ${ }^{\text {b }}{ }^{\prime}$ for $\mathbf{6 a}$ and i for $\mathbf{8 a} \mathbf{A}$, 8aB and 5a.

[^3]: ${ }^{\text {a }} \pi 1$, centroid of the ring C11-C16; $\pi 2$, centroid of the ring $\mathrm{C} 1-\mathrm{C} 6 ; \pi 2^{\prime}$, centroid of the ring $\mathrm{Cl}^{\prime}-\mathrm{C} 6^{\prime} .{ }^{\mathrm{b}} \mathrm{C}-\mathrm{H}$ lengths are within the range $0.93-1.03 \AA \AA^{\mathrm{c}} \gamma$, angle between $\mathrm{H} \cdots \pi$ vector and normal of the aromatic ring.

